Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mehmet Akkurt, ${ }^{\text {a* }}$ Sema Öztürk Yıldırım, ${ }^{\text {a }}$ Hasan Küçükbay, ${ }^{\text {b }}$ Nihat Sireci ${ }^{\text {b }}$ and Orhan Büyükgüngör ${ }^{\mathbf{c}}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, and ${ }^{\text {c }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.045$
$w R$ factor $=0.110$
Data-to-parameter ratio $=16.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3,3'-Bis(cyclohexylmethyl)-1,1'-propylenedibenzimidazolium dibromide monohydrate

The title compound, $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{4}{ }^{2+} \cdot 2 \mathrm{Br}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, was synthesized from $1,1^{\prime}$-propylendibenzimidazole and cyclohexylmethyl bromide in dimethylformamide solution. In the molecule, the benzimidazole ring systems are connected to the cyclohexane rings by methylene groups and to each other by a propylene group. The crystal structure is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds involving the H atoms of the water molecule.

Comment

In recent years, much attention has been devoted to benzimidazole compounds because of their versatile pharmacological activities, such as antitumour, diuretic, fungicidal, bactericidal, anthelmintic, anti-allergic, vasodilator, antihistaminic, anti-ulcer and local analgesic properties (Carlsson et al., 2002; Kotovskaya et al., 2006; Sondhi et al., 2006). We have reported the syntheses and antimicrobial activities of many benzimidazole derivatives (Küçükbay et al., 2001, 2003, 2004; Küçükbay \& Durmaz, 1997). The objective of this study was to synthesize and elucidate the crystal structure of the title compound, (I), and compare the results with those obtained in our previous studies of related benzimidazole derivatives (Akkurt, et al., 2005, 2006; Karaca et al., 2005; Pınar et al., 2006).

(I)

The values of the geometric parameters of (I) are within the ranges of normally accepted values (Allen et al., 1987). In the title molecule (Fig. 1), the two benzimidazole ring systems, A (N1/N2/C1-C6/C14) and B (N3/N4/C18-C24), are essentially planar, with maximum deviations of 0.014 (4) \AA for C6 in A

Received 14 June 2006
Accepted 19 June 2006

Figure 1
The asymmetric unit of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms are shown as small spheres.

Figure 2
View along the a axis, showing the packing and hydrogen bonds (dashed lines) in the crystal structure of (I). H atoms not involved in hydrogen bonding have been omitted.
and 0.013 (3) \AA for N3 in B. The dihedral angle between the planes of these benzimidazole ring systems is $31.84(11)^{\circ}$. The cyclohexane rings ($\mathrm{C} 8-\mathrm{C} 13$ and $\mathrm{C} 26-\mathrm{C} 31$) have chair conformations (Boeyens, 1978), with puckering parameters $Q_{\mathrm{T}}=$ $0.540(6) \AA, \theta=180.0(6)^{\circ}$ and $\varphi=207(23)^{\circ}$ for the C8-C13 ring, and $Q_{\mathrm{T}}=0.563(5) \AA, \theta=3.2(4)^{\circ}$ and $\varphi=12(8)^{\circ}$ for the C26-C31 ring (Cremer \& Pople, 1975).

The crystal structure is stabilized by intermolecular O $\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds involving the H atoms of the water molecule (Fig. 2), and also by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions (Table 1).

Experimental

$1,1^{\prime}$-Propylenedibenzimidazole was synthesized according to the literature method of Küçükbay et al. (2005). A mixture of $1,1^{\prime}$ propylenedibenzimidazole ($0.9 \mathrm{~g}, 3.26 \mathrm{mmol}$) and cyclohexylmethyl bromide ($1.2 \mathrm{~g}, 6.78 \mathrm{mmol}$) in dimethylformamide (DMF, 5 ml) was heated under reflux for 3 h . The mixture was then cooled and the volatiles were removed in vacuo. The residue was crystallized from a DMF/EtOH (1:3) mixture (yield: 1.77 g , 83%; m.p. $454-455 \mathrm{~K}$).

Analysis, calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{I}_{2}$: C 37.42, H 4.87, N 8.18\%; found: C 37.71, H 4.87, N 8.24%.

Crystal data

$\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{4}{ }^{2+} \cdot 2 \mathrm{Br}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$V=1502.14(18) \AA^{3}$
$M_{r}=648.50$
Triclinic, $P \overline{1}$
$a=9.2538(5) \AA$ 。
$b=12.5925$ (8) \AA
$c=15.4610$ (9) \AA
$\alpha=105.049$ (5) ${ }^{\circ}$
$\beta=105.593$ (4) ${ }^{\circ}$
$\gamma=110.034$ (4) ${ }^{\circ}$

Data collection

STOE IPDS-II diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.258, T_{\text {max }}=0.440$
$Z=2$
$D_{x}=1.434 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=2.73 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, colourless
$0.68 \times 0.55 \times 0.36 \mathrm{~mm}$

29924 measured reflections 5915 independent reflections 4567 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.049$
$\theta_{\text {max }}=26.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.047 P)^{2}\right. \\
& \quad+1.0857 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.57 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.65 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{Br} 1$	$0.82(3)$	$2.50(3)$	$3.305(5)$	$167(3)$
O1-H1B $\cdots \mathrm{Br} 2$	$0.82(5)$	$2.60(5)$	$3.421(4)$	$173(5)$
C7-H7B $B \mathrm{Br} 2$	0.97	2.84	$3.805(5)$	176
C18-H18 $\cdots \mathrm{Br} 1$	0.93	2.59	$3.495(4)$	165
C27-H27B $\cdots \mathrm{N} 4$	0.97	2.61	$2.936(5)$	100

The C-bound H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=$ $0.93-0.98 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The H atoms of the water molecule were located in a difference Fourier map and refined isotropically.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F. 279 of the University Research Fund). HK and NŞ also thank Ínönü University Research Fund (BAPB-2005/36 and 2005/37) for financial support for this study.

References

Akkurt, M., Karaca, S., Küçükbay, H., Orhan, E. \& Büyükgüngör, O. (2005). Acta Cryst. E61, o2452-o2454.
Akkurt, M., Yıldırım, S. Ö., Küçükbay, H., Şireci, N. \& Büyükgüngör, O. (2006). Acta Cryst. E62, o922-o924.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
Carlsson, E., Lindberg, P. \& Unge, S. (2002). Chem. Br. 5, 42-45.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Karaca, S., Akkurt, M., Yılmaz, U., Küçükbay, H. \& Büyükgüngör, O. (2005). Acta Cryst. E61, o2128-o2130.
Kotovskaya, S. K., Baskakova, Z. M., Charushin, V. N., Chupakhin, O. N., Belanov, E. F., Bormotov, N. I., Balakhnin, S. M. \& Serova, O. A. (2006). Pharm. Chem. J. USSR, 39, 574-578.

Küçükbay, H., Çetinkaya, E. \& Durmaz, R. (2005). Arzneim. Forsch. (Drug Res.), 45, 1331-1334.
Küçükbay, H. \& Durmaz, B. (1997). Arzneim. Forsch. (Drug Res.), 47, 667670.

Küçükbay, H., Durmaz, R., Güven, M. \& Günal, S. (2001). Arzneim. Forsch. (Drug Res.), 51, 420-424.
Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. \& Kazaz, C. (2004). Arzneim. Forsch. (Drug Res.), 54, 64-68.
Küçükbay, H., Durmaz, R., Orhan, E. \& Günal, S. (2003). Il Farmaco, 58, 431437.

Pınar, Ş., Akkurt, M., Küçükbay, H., Şireci, N. \& Büyükgüngör, O. (2006). Acta Cryst. E62, o2223-o2225.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. \& Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758-3765.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

